Activity Recognition

JUSTIN LIANG
MARCH 27, 2016
Agenda

• Detecting Events and Key Actors in Multi-Person Videos. V. Ramanathan, J. Huang, S. Abu-El-Haija, A. Gorban, K. Murphy and L. Fei-Fei. CVPR 2016.
What is Activity Recognition

• Idea is to be able to detect what event occurs in a video
 • Ex. diving, successful layup, failed layup, successful slam dunk, blocking, setting, standing

• Different sub domains to do activity recognition:
 • Individual activity recognition
 • Group activity recognition
 • Temporal activity recognition

[Ibrahim et al. CVPR 2016]
End-to-end Learning of Action Detection from Frame Glimpses in Videos
End-to-end Learning of Action Detection from Frame Glimpses in Videos

• Paper from Serena Yeung, Olga Russakovsky, Greg Mori, Li Fei-Fei in CVPR 2016.

• Objective:
 • Predict actions and their temporal bounds: how long and where they occur in a video clip. Video clips used are untrimmed.

• Key Contributions:
 • End-to-end approach to action detection and temporal localization in videos
 • Train an agent policy to skip video frames to find where the actions are in the video
 • Show that this method can outperform state of the art results
Approach

• Action detection is a process of observation and refinement. Effectively choosing a sequence of frame observations allows us to quickly narrow down when the baseball swing occurs.
Approach (Pipeline)

- o_n: observation feature vector
- h_n: internal hidden state
- d_n: candidate detection
 - s_n: action starts
 - e_n: action ends
 - c_n: action confidence level
- p_n: indicator to emit action
- l_{n+1}: location of next observation, $l_n \in [0,1]$
Observation Network

• Both the location l_n and video frame v_{l_n} are mapped to a hidden space and then combined with a fully connected layer to produce the observation vector o_n

• v_{l_n} is mapped using the VGG16 network and fc7 features are extracted from it
Recurrent Network

• Observation features \(o_n \) and previous internal hidden state \(h_{n-1} \) are inputs to the recurrent network \(f_h \) which is parameterized by \(\theta_h \) to produce \(h_n \).
Recurrent Network

- Observation features o_n and previous internal hidden state h_{n-1} are inputs to the recurrent network f_h which is parameterized by θ_h to produce h_n

- Candidate detection d_n:
 - $d_n = f_d(h_n; \theta_d)$, f_d is a fully connected layer
Recurrent Network

- Observation features o_n and previous internal hidden state h_{n-1} are inputs to the recurrent network f_h which is parameterized by θ_h to produce h_n

- Candidate detection d_n:
 - $d_n = f_d(h_n; \theta_d)$, f_d is a fully connected layer

- Prediction Indicator p_n:
 - $p_n = f_p(h_n; \theta_p)$, f_p is a fully connected layer
 - During training, f_p is used to parameterize a Bernoulli distribution from which p_n is sampled. At test time MAP estimate is used.
Recurrent Network

- Observation features o_n and previous internal hidden state h_{n-1} are inputs to the recurrent network f_h which is parameterized by θ_h to produce h_n.
- Candidate detection d_n:
 - $d_n = f_d(h_n; \theta_d)$, f_d is a fully connected layer.
- Prediction Indicator p_n:
 - $p_n = f_p(h_n; \theta_p)$, f_p is a fully connected layer.
 - During training, f_p is used to parameterize a Bernoulli distribution from which p_n is sampled. At test time MAP estimate is used.
- Location of next observation l_{n+1}:
 - $l_{n+1} = f_l(h_n; \theta_l)$, f_l is a fully connected layer.
 - During training, l_{n+1} is sampled from a Gaussian distribution with mean $f_l(h_n; \theta_l)$ and fixed variance. At test time MAP estimate is used.
Training

• Goal is to train three outputs: candidate detection d_n, prediction indicator p_n, location of next observation l_{n+1}
 • This is difficult due to the challenges of designing suitable loss and reward functions and handling non-differentiable model components

• We use backpropagation to train d_n and REINFORCE to train p_n and l_{n+1}
Training (Candidate Detection d_n)

• Match each candidate detection $D = \{d_n | n = 1, ..., N\}$ from recurrent network to ground truth $g_1, ..., g_M$

• Matching function:
 • $\gamma_{nm} = \begin{cases}
 1 & \text{if } m = \arg\min_{j=1,...,M} \text{dist}(l_n, g_j) \\
 0 & \text{otherwise}
 \end{cases}$
 • $g_j = (s_j, e_j)$
 • $\text{dist}(l_n, g_j) = \min(|s_j - l_n|, |e_j - l_n|)$
Training (Candidate Detection d_n)

- Match each candidate detection $D = \{d_n | n = 1, ..., N\}$ from recurrent network to ground truth $g_1, ..., M$

- Matching function:
 - $y_{nm} = \begin{cases} 1 & \text{if } m = \arg\min_{j=1, ..., M} \text{dist}(l_n, g_j) \\ 0 & \text{otherwise} \end{cases}$
 - $g_j = (s_j, e_j)$
 - $\text{dist}(l_n, g_j) = \min(|s_j - l_n|, |e_j - l_n|)$

- Loss function:
 - $\sum_n L_{\text{cls}}(d_n) + \gamma \sum_n \sum_m \mathbb{I}[y_{nm} = 1] L_{\text{loc}}(d_n, g_m)$
 - $L_{\text{cls}}(d_n)$: cross entropy loss on detection confidence c_n
 - $L_{\text{loc}}(d_n, g_m)$: L2 loss to further minimize distance $\| (s_n, e_n) - (s_m, e_m) \|$

- Optimize loss using backpropagation
Training (Location l_{n+1} and Prediction Indicator p_n)

• Use REINFORCE to learn observation and emission policies

REINFORCE:
• Objective: $J(\theta) = \sum_{a \in \mathcal{A}} p_\theta(a) r(a)$
 • \mathcal{A}: space of action sequences
 • $p_\theta(a)$: probability of action
 • $r(a)$: reward
Training (Location l_{n+1} and Prediction Indicator p_n)

• Use REINFORCE to learn observation and emission policies

• REINFORCE:
 • Objective: $J(\theta) = \sum_{a \in \mathcal{A}} p_\theta(a) r(a)$
 • \mathcal{A}: space of action sequences
 • $p_\theta(a)$: probability of action
 • $r(a)$: reward
 • Gradient: $\nabla J(\theta) = \sum_{a \in \mathcal{A}} p_\theta(a) \nabla \log p_\theta(a) r(a)$
 • This is a non trivial optimization problem due to the high dimensional space of possible action sequences!
 • Instead we can use Monte Carlo to take the expectation
Training (Location l_{n+1} and Prediction Indicator p_n)

• Use REINFORCE to learn observation and emission policies

• REINFORCE:
 • Objective: $J(\theta) = \sum_{a \in A} p_\theta(a) r(a)$
 - A: space of action sequences
 - $p_\theta(a)$: probability of action
 - $r(a)$: reward
 • Gradient: $\nabla J(\theta) = \sum_{a \in A} p_\theta(a) \nabla \log p_\theta(a) r(a)$
 - Use Monte Carlo to approximate:
 - $\nabla J(\theta) \approx \frac{1}{K} \sum_{K} \sum_{n=1}^{N} \nabla \log \pi_\theta (a_n^i | h_{1:n}, a_{1:n-1}^i) R_n^i$
 - K interaction sequences
 - N RNN time steps
 - π_θ: agent’s policy
 - a_n: current action (l_{n+1} or p_n)
 - R_n: cumulative reward from current timestep onward
 - h_n: hidden state
 • Optimize by maximizing objective
Training (Location l_{n+1} and Prediction Indicator p_n)

• Reward function:
 • Want high precision and recall
 • $r_N = \begin{cases} R_p & \text{if } M > 0 \text{ and } N_p = 0 \\ N_+R_+ + N_-R_- & \text{otherwise} \end{cases}$
 • N_p: # predictions emitted by agent
 • N_+, R_+: # true positive predictions and reward
 • N_-, R_-: # false positive predictions and reward
 • R_p: penalty for not emitting prediction when # ground truth $M > 0$

• Prediction is correct if its overlap with ground truth is greater than a threshold and higher than any other prediction
Strengths/Weaknesses of Approach

• Strengths:
 • Do not need to look at all the frames
 • End-to-end learning

• Weaknesses:
 • Need all the frames in a clip (cannot do online detection)
 • Can be difficult to learn observation policy if event contains less discriminative movements
Results

• Results from THUMOS’14 comparing with top 3 performers. mAP is reported for different IOU thresholds α

• Ablation studies show that without localization regression and where to observe next, results are significantly worse

<table>
<thead>
<tr>
<th></th>
<th>$\alpha=0.5$</th>
<th>$\alpha=0.4$</th>
<th>$\alpha=0.3$</th>
<th>$\alpha=0.2$</th>
<th>$\alpha=0.1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karaman et al. [13]</td>
<td>0.9</td>
<td>1.4</td>
<td>2.1</td>
<td>3.4</td>
<td>4.6</td>
</tr>
<tr>
<td>Wang et al. [39]</td>
<td>8.3</td>
<td>11.7</td>
<td>14.0</td>
<td>17.0</td>
<td>18.2</td>
</tr>
<tr>
<td>Oneata et al. [22]</td>
<td>14.4</td>
<td>20.8</td>
<td>27.0</td>
<td>33.6</td>
<td>36.6</td>
</tr>
<tr>
<td>Ours (full)</td>
<td>17.1</td>
<td>26.4</td>
<td>36.0</td>
<td>44.0</td>
<td>48.9</td>
</tr>
</tbody>
</table>
Results (Learned Observation Policy)
Results (Learned Observation Policy)
Future Direction

• Learn joint spatio-temporal observation policies
Detecting Events and Key Actors in Multi-Person Videos
Detecting Events and Key Actors in Multi-Person Videos

• Paper from Vignesh Ramanathan, Jonathan Huang, Sami Abu-El-Haija, Alexander Gorban, Kevin Murphy and Li Fei-Fei in CVPR 2016.

• Objective:
 • Predict events and key actors in videos where multiple people are involved

• Key Contributions:
 • Introduce large-scale basketball event dataset
 • Use attention to decide most relevant people to the action being performed
 • Show that the attention model results in better event recognition
Dataset

• Introduced a large dataset with multi-person action videos. The dataset consists of 257 NCAA games each around 1.5 hours long. 11 different basketball events are densely annotated in the videos.
Approach

• Events in a team sport are performed by a set of key players. It is sufficient to focus only the players participating to recognize an event. For example, a “steal” event in basketball is defined by the action of the player attempting to pass the ball and the player stealing.

• The idea is to focus on key players to predict events.
Approach (Pipeline)

• Each player track is processed by a BLSTM network. The output hidden state is processed by an attention model to identify key players.

• The thickness of the boxes show attention weights.

• Each video frame is processed by a BLSTM network.
Feature Extraction

• Each video frame t is represented as a feature vector f_t from the activation of the last fully connected layer of the Inception7 network.

• Each player i bounding box is represented as a feature vector p_{ti} from Inception7.
Event Classification

- Compute global context vector for each frame t:
 - $h_t^f = BLSTM_{frame}(h_{t-1}^f, h_{t+1}^f, f_t)$
Event Classification

- Compute global context vector for each frame t:
 - $h_t^f = BLSTM_{frame}(h_{t-1}^f, h_{t+1}^f, f_t)$

- Next compute hidden state of event at time t:
 - $h_t^e = LSTM(h_{t-1}^e, h_t^f, a_t)$
 - a_t is the feature vector for the players from the attention model
Event Classification

• Compute global context vector for each frame t:
 - $h_t^f = BLSTM_{frame}(h_{t-1}^f, h_{t+1}^f, f_t)$

• Next compute hidden state of event at time t:
 - $h_t^e = LSTM(h_{t-1}^e, h_t^f, a_t)$
 - a_t is the feature vector for the players from the attention model

• Predict class label using $w_k^T h_t^e$

• Squared Hinge Loss function:
 - $L = \frac{1}{2} \sum_{t=1}^{T} \sum_{k=1}^{K} \max(0, 1 - y_k w_k^T h_t^e)^2$
 - y_k is 1 if the video belongs to class k and -1 otherwise
Attention

• How do we get the feature vector a_t for the players from the attention model?
Attention Models (with tracking)

- Attention model with KLT tracking for player i and frame t:
 - $h_{ti}^p = BLSTM_{track}(h_{t-1,i}^p, h_{t+1,i}^p, p_{ti})$
 - $a_{t}^{track} = \sum_{i=1}^{N_t} \gamma_{ti}^p h_{ti}^p$
 - $\gamma_{ti}^{track} = \text{softmax}(\phi(h_t^f, h_{ti}^p, h_{t-1}; \tau))$

- a_t: weighted combination over players in frame t
- γ_{ti}: attention weights
- N_t: # player detections in frame t
- $\phi()$: multilayer perceptron
- τ: softmax temperature
Attention Models (without tracking)

- Attention model without tracking:
 - $a_t^{\text{notrack}} = \sum_{i=1}^{N_t} \gamma_{ti}^{\text{notrack}} p_{ti}$
 - $\gamma_{ti}^{\text{notrack}} = \text{softmax} (\phi(h_t^i, p_{ti}, h_{t-1}^e); \tau)$

- a_t: weighted combination over players in frame t
- γ_{ti}: attention weights
- N_t: # player detections in frame t
- $\phi()$: multilayer perceptron
- τ: softmax temperature
- p_{ti}: player feature vector from Inception7
Strengths/Weaknesses of Approach

• Strengths:
 • Attention focuses on key players

• Weaknesses:
 • Need all the frames in a clip (cannot do online detection)
 • Model tends to be reluctant to switch attention between players in a scene
Results (Event Classification)

- Here we compare the ability to classify isolated video clips into 11 classes.
- Attention is particularly good for shot-based events where attending to the shot making person or defenders can be useful.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3-point succ.</td>
<td>0.370</td>
<td>0.428</td>
<td>0.117</td>
<td>0.237</td>
<td>0.462</td>
<td>0.469</td>
<td>0.545</td>
<td>0.583</td>
<td>0.600</td>
</tr>
<tr>
<td>3-point fail.</td>
<td>0.501</td>
<td>0.481</td>
<td>0.282</td>
<td>0.335</td>
<td>0.564</td>
<td>0.614</td>
<td>0.702</td>
<td>0.668</td>
<td>0.738</td>
</tr>
<tr>
<td>fr-throw succ.</td>
<td>0.778</td>
<td>0.703</td>
<td>0.642</td>
<td>0.597</td>
<td>0.876</td>
<td>0.885</td>
<td>0.809</td>
<td>0.892</td>
<td>0.882</td>
</tr>
<tr>
<td>fr-throw fail.</td>
<td>0.365</td>
<td>0.623</td>
<td>0.319</td>
<td>0.318</td>
<td>0.584</td>
<td>0.700</td>
<td>0.641</td>
<td>0.671</td>
<td>0.516</td>
</tr>
<tr>
<td>layup succ.</td>
<td>0.283</td>
<td>0.300</td>
<td>0.195</td>
<td>0.257</td>
<td>0.463</td>
<td>0.416</td>
<td>0.472</td>
<td>0.489</td>
<td>0.500</td>
</tr>
<tr>
<td>layup fail.</td>
<td>0.278</td>
<td>0.311</td>
<td>0.185</td>
<td>0.247</td>
<td>0.386</td>
<td>0.305</td>
<td>0.388</td>
<td>0.426</td>
<td>0.445</td>
</tr>
<tr>
<td>2-point succ.</td>
<td>0.136</td>
<td>0.233</td>
<td>0.078</td>
<td>0.224</td>
<td>0.257</td>
<td>0.228</td>
<td>0.255</td>
<td>0.281</td>
<td>0.341</td>
</tr>
<tr>
<td>2-point fail.</td>
<td>0.303</td>
<td>0.285</td>
<td>0.254</td>
<td>0.299</td>
<td>0.378</td>
<td>0.473</td>
<td>0.442</td>
<td>0.471</td>
<td>0.471</td>
</tr>
<tr>
<td>sl. dunk succ.</td>
<td>0.197</td>
<td>0.171</td>
<td>0.047</td>
<td>0.112</td>
<td>0.285</td>
<td>0.107</td>
<td>0.186</td>
<td>0.210</td>
<td>0.291</td>
</tr>
<tr>
<td>sl. dunk fail.</td>
<td>0.004</td>
<td>0.010</td>
<td>0.004</td>
<td>0.005</td>
<td>0.027</td>
<td>0.006</td>
<td>0.010</td>
<td>0.006</td>
<td>0.004</td>
</tr>
<tr>
<td>steal</td>
<td>0.555</td>
<td>0.473</td>
<td>0.303</td>
<td>0.843</td>
<td>0.876</td>
<td>0.843</td>
<td>0.894</td>
<td>0.886</td>
<td>0.893</td>
</tr>
<tr>
<td>Mean</td>
<td>0.343</td>
<td>0.365</td>
<td>0.221</td>
<td>0.316</td>
<td>0.469</td>
<td>0.452</td>
<td>0.489</td>
<td>0.505</td>
<td>0.516</td>
</tr>
</tbody>
</table>

Table 2. Mean average precision for event classification given isolated clips.
Results (Event Detection)

- Here we compare the ability to temporally localize events in untrimmed videos using a 4 second sliding window through all the videos.

- Here, a steal event is particularly challenging as it is often mistaken for a pass.

- Combining the player features by averaging without using attention performs very good as well.
 - Possibly because the algorithm has difficulty changing attention since we are dealing with untrimmed videos.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3-point succ.</td>
<td>0.194</td>
<td>0.203</td>
<td>0.123</td>
<td>0.230</td>
<td>0.251</td>
<td>0.268</td>
<td>0.263</td>
<td>0.239</td>
</tr>
<tr>
<td>3-point fail.</td>
<td>0.393</td>
<td>0.376</td>
<td>0.311</td>
<td>0.505</td>
<td>0.526</td>
<td>0.521</td>
<td>0.556</td>
<td>0.600</td>
</tr>
<tr>
<td>free-throw succ.</td>
<td>0.585</td>
<td>0.621</td>
<td>0.542</td>
<td>0.741</td>
<td>0.777</td>
<td>0.811</td>
<td>0.788</td>
<td>0.810</td>
</tr>
<tr>
<td>free-throw fail.</td>
<td>0.231</td>
<td>0.277</td>
<td>0.458</td>
<td>0.434</td>
<td>0.470</td>
<td>0.444</td>
<td>0.468</td>
<td>0.405</td>
</tr>
<tr>
<td>layup succ.</td>
<td>0.258</td>
<td>0.290</td>
<td>0.175</td>
<td>0.492</td>
<td>0.402</td>
<td>0.489</td>
<td>0.494</td>
<td>0.512</td>
</tr>
<tr>
<td>layup fail.</td>
<td>0.141</td>
<td>0.200</td>
<td>0.151</td>
<td>0.187</td>
<td>0.142</td>
<td>0.139</td>
<td>0.207</td>
<td>0.208</td>
</tr>
<tr>
<td>2-point succ.</td>
<td>0.161</td>
<td>0.170</td>
<td>0.126</td>
<td>0.352</td>
<td>0.371</td>
<td>0.417</td>
<td>0.366</td>
<td>0.400</td>
</tr>
<tr>
<td>2-point fail.</td>
<td>0.358</td>
<td>0.339</td>
<td>0.226</td>
<td>0.544</td>
<td>0.578</td>
<td>0.684</td>
<td>0.619</td>
<td>0.674</td>
</tr>
<tr>
<td>slam dunk succ.</td>
<td>0.137</td>
<td>0.275</td>
<td>0.114</td>
<td>0.428</td>
<td>0.566</td>
<td>0.457</td>
<td>0.576</td>
<td>0.555</td>
</tr>
<tr>
<td>slam dunk fail.</td>
<td>0.007</td>
<td>0.006</td>
<td>0.003</td>
<td>0.122</td>
<td>0.059</td>
<td>0.009</td>
<td>0.005</td>
<td>0.045</td>
</tr>
<tr>
<td>steal</td>
<td>0.242</td>
<td>0.255</td>
<td>0.187</td>
<td>0.359</td>
<td>0.348</td>
<td>0.313</td>
<td>0.340</td>
<td>0.339</td>
</tr>
<tr>
<td>Mean</td>
<td>0.246</td>
<td>0.273</td>
<td>0.219</td>
<td>0.400</td>
<td>0.408</td>
<td>0.414</td>
<td>0.426</td>
<td>0.435</td>
</tr>
</tbody>
</table>

Table 3. Mean average precision for event detection given untrimmed videos.
Results (Attention)

- Attended player is in cyan and ball is in yellow
- Results show that model attends to the player making the shot at the beginning
Results (Attention Heatmap)

- Distribution of attention shows initially attention focuses on shooter and then disperses later in the event.
Wrap Up

• Questions?
• Suggestions?